17.4.1 Rekenen aan schakelingen – Vervangingsweerstand

De vervangingsweerstand van een schakeling is de weerstand die de schakeling als geheel blijkt te hebben.

In een serieschakeling geldt $$R_{\text{vervanging}} = R_1 + R_2 + R_3 + …$$

In een parallelschakeling geldt $$\frac{1}{R_{\text{vervanging}}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + …$$

Voorbeeld: Een weerstand van 8 Ω is in serie geschakeld met een elektromotor van 2 Ω. Deze schakeling wordt vervolgens aangesloten op een 9,0 V batterij. Bepaal de vervangingsweerstand en de stroomsterktes en spanningen voor beide toestellen.

De vervangingsweerstand is

$$R_{\text{vervanging}} = 8 \; \Omega + 2 \; \Omega = 10 \; \Omega.$$

De stroom die door de schakeling gaat lopen is daarom gelijk aan

$$I_{\text{schakeling}} = \frac{U_{\text{schakeling}}}{R_{\text{vervanging}}} = \frac{9,0 \; \text{V}}{10 \; \Omega} = 0,9 \; \text{A}.$$

In een serieschakeling zijn alle stromen gelijk, dus

$$I_{ws} = 0,9 \; \text{A}; \; \; I_{em} = 0,9 \; \text{A}.$$

De totale spanning van 9,0 V wordt verdeeld over de toestellen, maar niet gelijkelijk: het toestel met de grootste weerstand heeft de meeste spanning nodig:

$$U_{ws} = I_{ws}R_{ws} = 0,9 \; \text{A} \cdot 8 \; \Omega = 7,2 \; \text{V} ; \; \; U_{em} = I_{em}R_{em} = 0,9 \; \text{A} \cdot 2 \; \Omega = 1,8 \; \text{V}.$$

Voorbeeld: Een warmhoudplaat met een weerstand van 45 Ω en een schemerlamp van 36 Ω zijn aangesloten op hetzelfde stopcontact met U = 180 V in parallelschakeling. Bepaal de vervangingsweerstand en de stroomsterktes en spanningen.

De vergelijking voor de vervangingsweerstand wordt:

$$\frac{1}{R_{\text{vervanging}}} = \frac{1}{45 \; \Omega} + \frac{1}{36 \; \Omega} = \frac{4}{180 \; \Omega} + \frac{5}{180 \; \Omega} = \frac{9}{180 \; \Omega} = \frac{1}{20 \; \Omega};$$

zodoende is Rvervanging = 20 Ω.

De totale stroomsterkte is dus

$$I_{\text{schakeling}}=\frac{U_{\text{schakeling}}}{R_{\text{vervanging}}} = \frac{180 \; \text{V}}{20 \; \Omega} = 9,0 \; \text{A}.$$

Beide toestellen ontvangen de volle 180 V spanning.

De 9,0 A totale stroom wordt verdeeld over de toestellen; het toestel met de laagste weerstand krijgt de meeste stroom:

$$I_{whp} = \frac{U_{whp}}{R_{whp}} = \frac{180 \; \text{V}}{45 \; \Omega} = 4,0 \; \text{A}; \; \; I_{schl}=\frac{U_{schl}}{R_{schl}} = \frac{180 \; \text{V}}{36 \; \Omega}= 5,0 \; \text{A}.$$