21.3.7 Veerkracht

Les Voortgang
0% voltooid

Wanneer een elastisch voorwerp wordt uitgerekt of samengedrukt, zal het een veerkracht uitoefenen die deze vervorming tegengaat. Het eenvoudigste model hiervoor is de zgn. wet van Hooke:

$$F_v = -k \; u$$

Hierbij is

  • u   de vervorming van het elastisch voorwerp, in meter (m);
  • Fv   de veerkracht die het voorwerp uitoefent, in newton (N);
  • k    de veerconstante van het voorwerp, in N/m.

Hoe stijver het elastische voorwerp is, des te groter is de veerconstante.

Vooral metalen veren worden goed beschreven door deze wet; voor rubber elastieken en dergelijke is zij slechts een ruwe benadering.

Voorbeeld: Een pak met 2,0 kg suiker hangt aan een veer, k = 400 N/m. Hoe ver rekt deze veer uit?

In dit geval heft de veerkracht de zwaartekracht precies op. Zodoende is

$$k \; u = m \; g;$$ $$u = \frac{m \; g}{k} = \frac{2,0 \; \text{kg} \cdot 9,8 \; \text{N/kg}}{400 \; \text{N/m}} = 0,049 \; \text{m}.$$

De veer moet dus ongeveer 5 cm uitrekken om het pak suiker te kunnen dragen.