Processing math: 0%

35.2.4 De abc-formule

De oplossingen van de vergelijking Ax^2 + Bx + C = 0zijn

x = \frac{-B \pm \sqrt{B^2 -4AC}}{2A}.

Het getal onder het wortelteken, B2 – 4AC, heet de discriminant van de vergelijking.

  • Als de discriminant positief is, zijn er twee oplossingen.
  • Als de discriminant nul is, is er één oplossing.
  • Als de discriminant negatief is, zijn er geen (reële) oplossingen.

Voorbeeld: Los op: x^2 \; – x \; – 1 = 0.

In dit geval is A = 1, B = –1, en C = –1. De discriminant is

B^2 – 4AC = 1 \; – (-4) = 5,

dus zijn er twee verschillende oplossingen:

x=\frac{-(-1) \pm \sqrt{5}}{2 \cdot 1} = \frac{1 \pm \sqrt{5}}{2}.

Voorbeeld: Los op: 6x^2 + 13 = 16x.

Herleid eerst op nul: 6x^2 \; – 16 x + 13 = 0.

A = 6, B = –16, C = 13

discriminant = B2 – 4AC = 256 – 312 = –56,

dus zijn er geen reële oplossingen.