Processing math: 100%

40.5.3 Logaritmische functies

Een logaritmische functie heeft voorschrift f(x) = A \cdot ^B\log{x}

met positieve coëfficiënt A en grondtal B (meestal > 1).

Het domein bestaat uit alle positieve getallen. Aan de rand van het domein geldt \lim_{x\downarrow 10} f(x) = \lim_{x \downarrow 10} ^B\log{x} = – \infty

dus is de lijn x = 0 een verticale asymptoot.

De grafiek lijkt veel op die van f(x) = ln x  (hiernaast). Het nulpunt ligt in x = 1. De grafiek is overal stijgend en loopt bol.

Bepaal het hellinggetal van de raaklijn aan f(x) = \frac{1}{2} \log{x} in het punt (100,1).

  • De afgeleide functie is f'(x) = \frac{1}{2 \ln{10}} \cdot \frac{1}{x}
  • Het hellinggetal (ri.co.) bij x = 100 is dus \frac{1}{2 \ln{10}} \cdot \frac{1}{199} \approx 0,00217.